

Routed Optical Networks

Technology Economics

Ovidiu Visan/Valerio Viscardi SP Architecture Cisco October 2021

Routed Optical Networking

IP and Optical Convergence

Sustainable Architecture

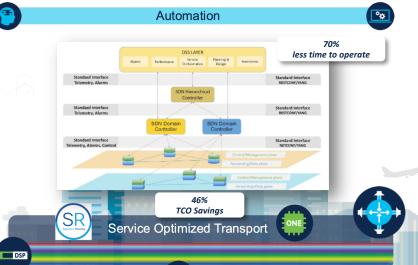
Increasing optics speed at a costefficient price point and a small footprint: silicon photonics + CMOS wafer

power reduction

70% space reduction

Silicon chipsets that are industryleading in performance with no compromise on features enabling 12-18m Innovation cvcles

2x power reduction


space reduction

Evolution of NOS and cloud enhanced applications to enable new architectures

memory reduction

boot time reduction

IOS XR

Customer Access Point

Access

Pre Aggregation

Aggregation

57%

Opex Savinas

Core

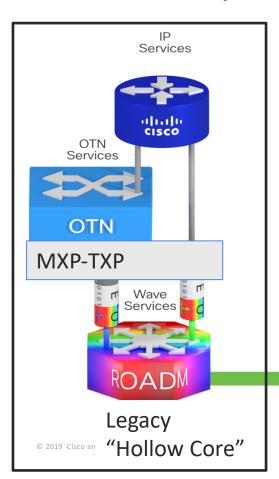
35%

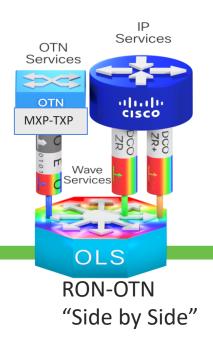
Capex Savings

Peering

Routed Optical Networking Architecture

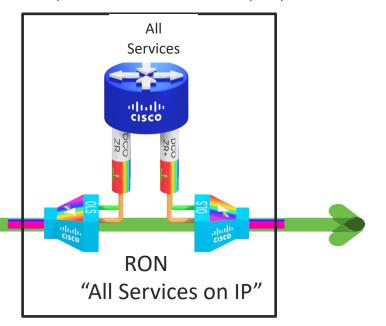
NCS 540


NCS 560-57C3

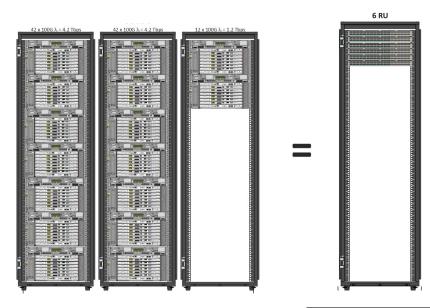

NCS & ASR 9000

CISCO 8000

Evolution Steps



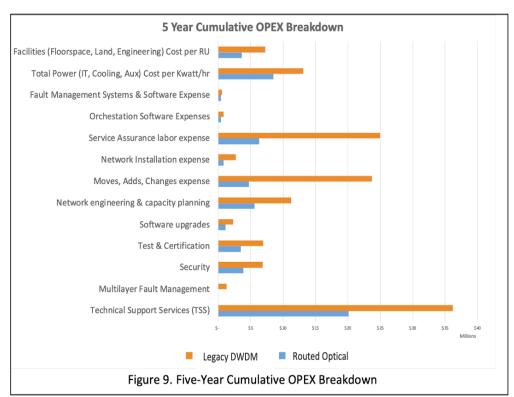
Routed Optical Network = RON

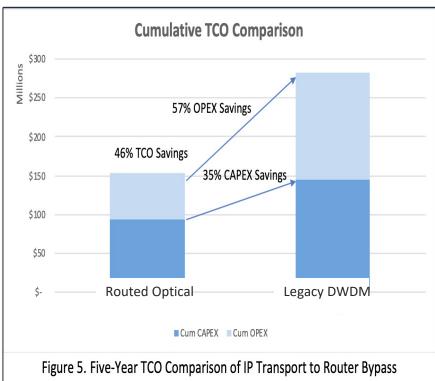

Traffic follows fiber topology

Challenges legacy layered approach on few concepts:

- 1) Source of colored traffic, @L3
- 2) Traffic switching, @L3
- 3) Single control plane, L3
- 4) Model driven automation and telemetry
- 5) OTN services are emulated (PLE)

Example – BAU 96x100G TXP-MXP vs RON 64 x400G termination

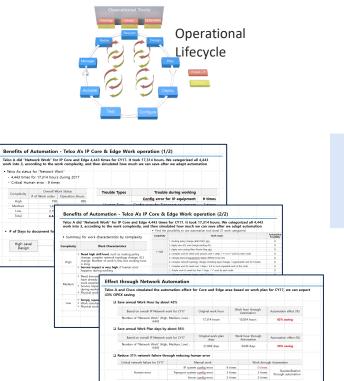

Watts	Amps at -48Vdc	Amps at -42Vdc	BTU/hr
22,179.00	462.06	528.07	75,674.75

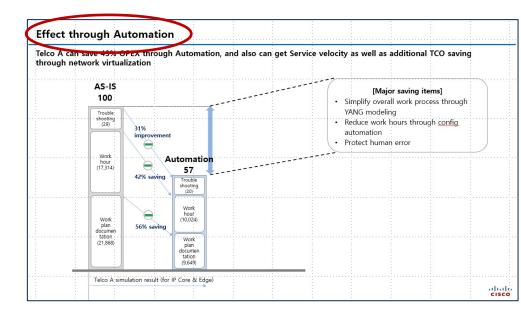

+Router Power & Space

6 x 8201 Power Draw									
Typical	Max	BTU/Hr	BTU/Hr						
Watts	Watts	Typical	Max						
2,490.00	3,112.50	8,495.88	10,619.85						

Routed Optical Networking Benefits

Up to ~57% OpEx savings, 46% total TCO savings

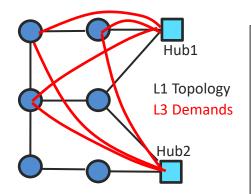




© 2019 Cisco and/or its affiliates. All rights reserved.

Operational Savings, Calculation

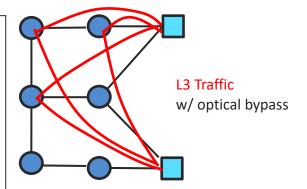
20 times 31% improvement



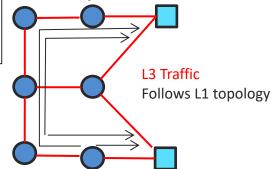
RON TCO Baseline

Analyzing a Simple Network ...

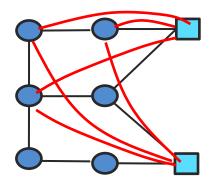
	_						$\overline{}$	
[- 1	Site	N1	Edge	5	10	-110	50
Geographical		Site	N2	Edge	10	10	-70	
Names, distance		Site	N3	Edge	10	5	-75	45
		Site	N4	Edge	5	5	-100	40
	₹							
(Span	Link-1	N1	N2	450		
I 1/Fiber		Span	Link-2	N2	N3	225	TW105/EL60/60	
		Span	Link-3	N3	N4	600		
l l		Span	Link-4	N4	N1	300		
•	=						Ì	
(Demand	Dem-1-W	N1	N2	1200	Link-1	Working
L3 demand &		Demand	Dem-1-P	N1	N2	1200	Link-4, Link-3, Link-2	Protect
Traffic matrix BW		Demand	Dem-2	N1	N4		Link-4	Working
Trainic matrix BVV		Demand	Dem-3	N3	N4	1420	Link-3	Working
(J							
	П	DefaultLoad	4637					

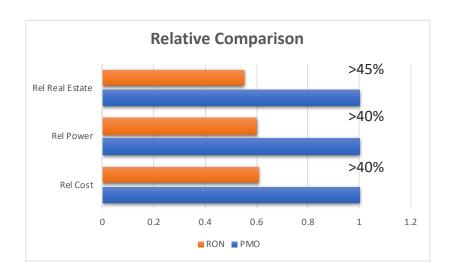

The ASK:

- Compare Legacy DWDM vs RON
- Cost, Power, Rack space
- Sensitivity analysis


The Input:

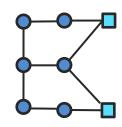
- 6 spokes dual-homed to 2 Hubs
- L1 Topology, spans ~100-200 Km
- 400Gbps DWDM design
- Most 20-60 Gbps per spoke, random

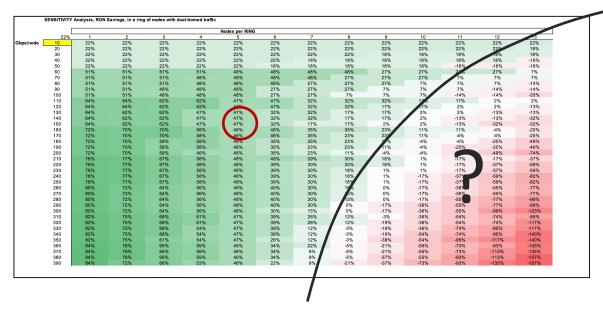

Legacy DWDM "Hollow Core"



Routed Optical "RON"

Simple Network Simulations 6 spokes + 2 Hubs

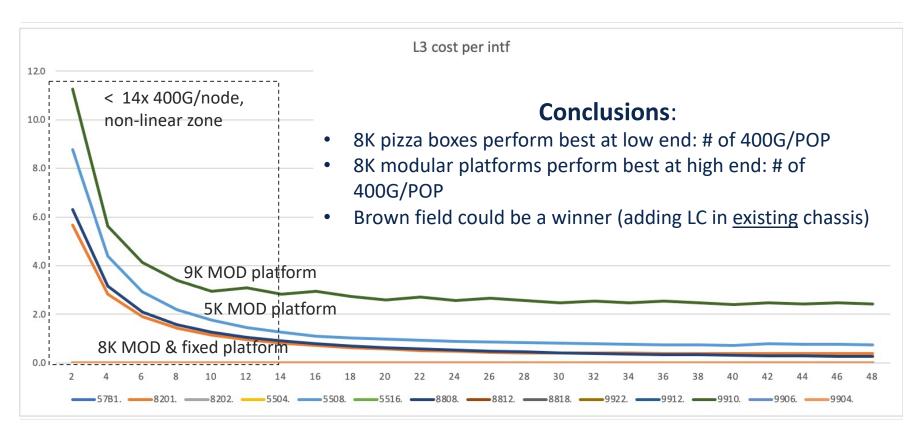



Goal - Identify CapEx Savings Inflexion Points:

- Changing number of nodes per ring
- Changing amount of traffic per node
- Changing traffic pattern H&S -> Mesh
- Changing the platform choice (82xx, NCS 5500, ASR9K)

When will the above results change?

Simple Network Simulation CAPEX Savings Analysis



Capex savings influenced by:

Traffic - bandwidth & patterns
Network topology
Network modelling constraints
Choice of equipment

Capex Savings Impact of L3 Platform Choice for 400G Transport ...

RON Economics Real Simulations

RON Economics - Evaluation Methodology

Customer Input

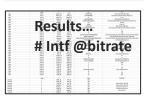
- . Traffic matrix
- . Topology info
- . Growth projection

Network Modeling

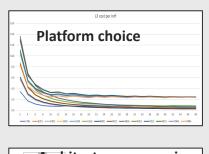
Input = "1"

Processing:

- . Routing
- . Optical Feasibility


Results:

- . # of interfaces per node
- . Json or csv output format

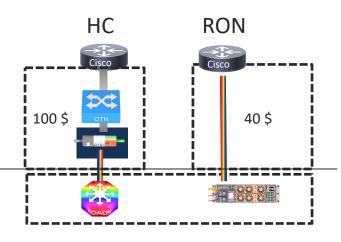

Processing Engine Results

Post Processing= BOM + Comparisons


- . Traffic growth, projection
- . Equipment selection

Capex Results and Analysis

Network Operator Input


RON Economics vs. Legacy Networks

Legacy DWDM (Hollow core)

- L3 HW (8202, fixed cfg 2RU)
 100G grey pluggables
- □ TXP HW (NCS1004 + TXP board)
- ROADM (NCS 2K)+Optical amplifiers, if needed
- □ SW + services (3Y)

RON (Hop by Hop)

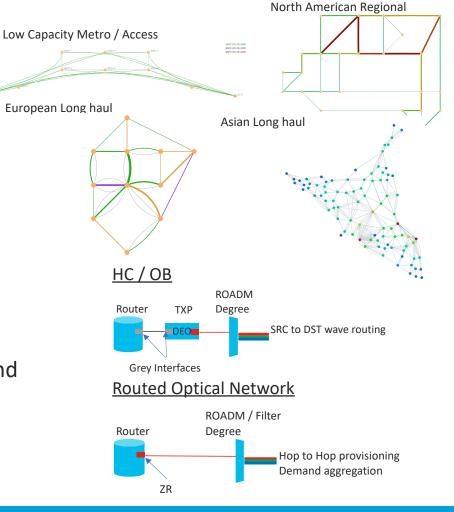
- L3 HW (8201, fixed cfg 1RU)400G optics DCO ZR/ZR+
- □ (no TXP)
- OLS or ROADM (legacy or NCS1010)
 - +Optical amplifiers, if needed
- □ SW + services (3Y)

Modelling the Networks

Network Models - Low & High Capacity

Access

Metro


Long haul

Across Geographies

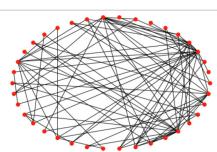
Modelling encompasses

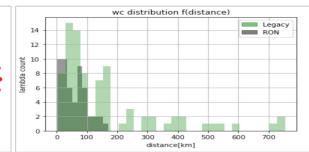
Hollow Core (HC), Optimal Bypass (OB) and Routed Optical Network (RON)

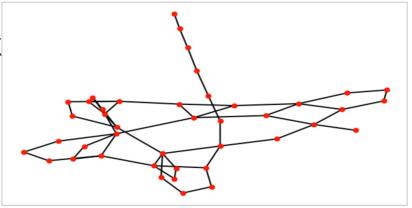
Relative comparison of above networks around Cost, Power and Real estate

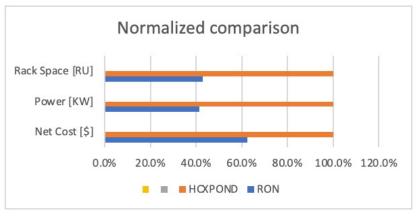
A National EU Regional Network

National DWDM Network


40+ Sites


~4,000 km of fiber


Approximately 40% Cost savings


Compared Hollow Core to Routed Optical Network

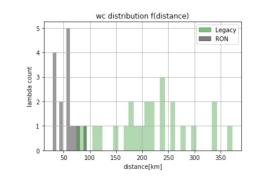
Assumed Greenfield network

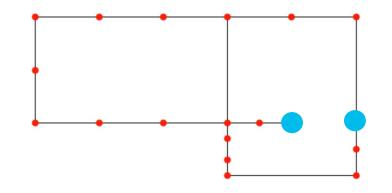
Routed Optical Network: ~ 40% Cost, 60% Power and 60% Real estate, savings over HC

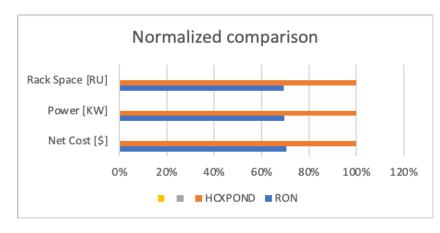
National EU Metro Network

National DWDM Network

15 Sites


~1,200 km of fiber


2-Homed traffic, 30-120 Gbps/spoke

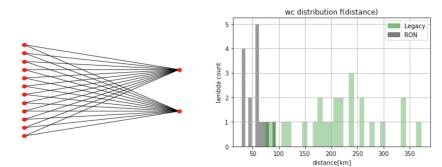

Approximately 35% Cost savings

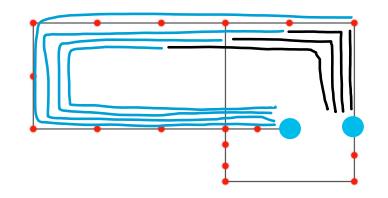
Compared Hollow Core to Routed Optical

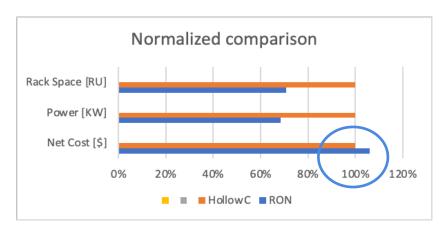
Network

© 2019 Cisco and/or its affiliates. All rights reserved

National Metro Network – EU Finding the breaking point ...


National DWDM Network


15 Sites, Scenario F Traffic x 3 !!!!


2-Homed traffic, no oversubscription

RON approximately 5% more expensive

High bandwidth/site => no advantage of grooming into 400G lambdas. **800G to the rescue** ...

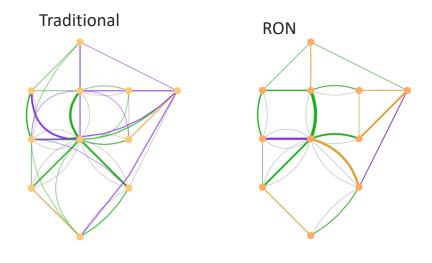
© 2019 Cisco and/or its affiliates. All rights reserved

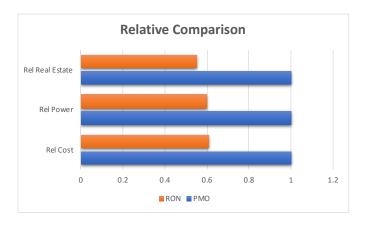
Long Haul Network, EU

Sample European Long-Haul Network

11 Sites

> 6,000 km of fiber


Approximately 40% Cost savings


Compared Hollow Core to Routed Optical Network

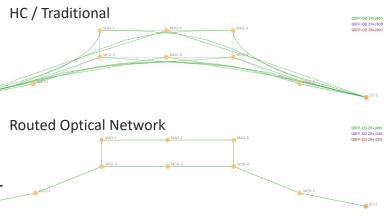
Assumed Greenfield network

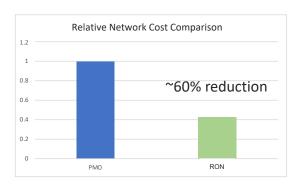
Optical Bypass provided no significant advantage to RON

Routed Optical Network showed reduced TCO vs Traditional (HC) network

© 2019 Cisco and/or its affiliates. All rights reserved.

Low Bandwidth, Metro EU


Access / Metro Network


- Hollow Core(HC) Typical Metro Mode of Operation leveraging OLS and Transponders
- Routed Optical Network Moving to 400Gig QSFP-DD ZR+ Optics in a Hop2Hop architecture

Approximately ~60% cost savings

Where 40 X 10G DWDM was previously leveraged (PMO)

Routed Optical Network - single 400Gig integrated wavelength provides grooming advantage

High Bandwidth Application - NA

North American Regional Network

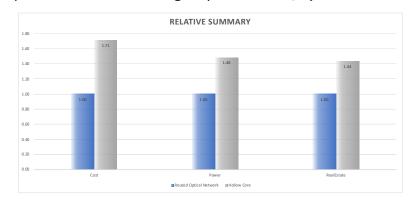
70+ Sites

> 4,000 km of fiber


Approximately 40% Cost savings

Compared Hollow Core to Routed Optical Network

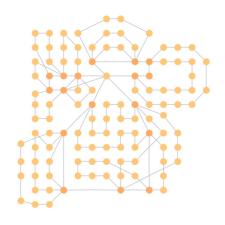
Assumed Brownfield Network

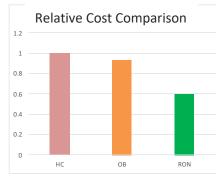

Routed Optical Network showed reduced TCO vs Traditional (HC) network

Increases DWDM infrastructure longevity

Traffic Load = 33.2Tbps

Routed Optical Network requires >2X interfaces Improves Infrastructure longevity – max 15 λ / span vs 34

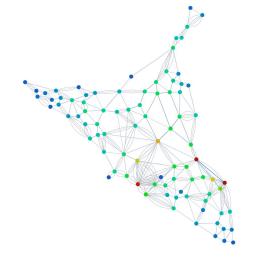


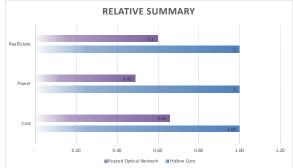

Metro – Regional – Long Haul, NA

Comparison of:

Hollow Core (HC) – Reference Architecture Routed Optical Network

Routed Optical Network demonstrated ~40% savings





Long Haul Network - APAC

Sample Asian Long Haul Network 230 Sites ~80,000 km of fiber

Approximately 40% Cost savings
Hollow Core vs Routed Optical Network
Optical vs L3 redundancy (1+1+R)
Assumed Greenfield network

Summary

Network transformation beyond just IP and Optical integration is coming. To be competitive it's important to educate and understand all aspects of the Routed Optical Network

- New generation of routers and NPUs optimized for 400G and beyond
- New generation of compact pluggable modules with integrated DCO allowing zero port density tradeoff
- De-layering of networks through services convergence, including private line emulation
- Adoption of simple topologies, like hop-to-hop and point-to-point DWDM (simpler ROADMs)

Economics of networking must change with bigger focus on new architectures for operational simplicity and network optimization

Advantages

Fewer devices

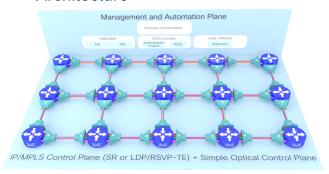
Efficient network utilization

Traffic protection at single layer

Removes network complexity

SUSTAINABILITY less power & space

OPEX savings through automation



cisco

Routed Optical Networks ... in Simple Terms

Converged Architecture of P2P Routed Segments

- Integrates coherent optics in Routers
- Maximize transmission bit-rate per fiber segment -> 400Gbps
- ➤ Fiber Topology = Router Topology
- Simpler Network and Management Architecture

A Set of Products to enable the Architecture

400G QSFP-DD-ZR/ZR+ Pluggables

400GE-capable Routers New Silicon

Simpler /Open DWDM Line System

Advanced Automation and Control Plane

Cisco has industry-leading Products to support this open Architecture