

Safeguard Your Network in a Post-Quantum World

Rakesh Kandula, TME

Raja Kolagatla, Product Manager

November 15, 2023

Agenda

- 1. Post-quantum threat to security
- 2. Areas of impact
- 3. Transport security solutions
- 4. Product support and roadmap
- 5. Demo

Post-quantum threat to security

People are making incremental efforts in developing a quantum computer.

Once they have one sufficiently large and reliable, they could use it to <u>break current encryption</u> (public key algorithms).

Areas of impact

Scope of post-quantum threat

Firmware/software integrity	Identity	Transport security	
 Firmware and NOS image signing Secure Boot IMA* keys, software image posting, etc. 	 Server certificates Individual identities Device identity (like SUDI**) SSH 	MACsecIPsecTLS	

*IMA – <u>Integrity Measurement Architecture</u>

**SUDI – <u>Secure Unique Device Identifier</u>

Transport security impact

Quantum computing impact on cryptography

© 2023 Cisco and/or its affiliates. All rights reserved. Cisco Public

cisco

Why care about quantum threats now?

- Attackers can tap flows today and store them to be decrypted in the future.
- 2. Any sensitive deployments that need forward secrecy for 5+ years must act now.
 - Military or other defense networks
 - Federal or other government agencies
 - Financial institutions and banks
 - Service provider networks catering to enterprises with sensitive data
- 3. Less critical or short-lived sessions without long-term significance can wait.

Transport security solutions

Available options

Symmetric cryptography	Quantum key distribution	Post-quantum cryptography
Long symmetric keys are quantum-safe	Use quantum mechanics to protect the data	Replace current public key algorithms with new ones
Issues with distributing keys and trust	Technology limitations	Still need to vet the algorithms and update the

protocols

Quantum-safe MACsec

Pre-shared key (PSK) option

- 1. MACsec with PSK option is already supported and used by customers.
- 2. There is no need for additional hardware (like Quantum Key Distribution QKD) or software upgrade.
- 3. Quantum-safe as this is based on symmetric cryptography which is quantum-resistant.

Quantum key distribution options

Quantum key distribution – Basic principle

Existing method

QKD method

*Security Association Key (SAK)

Cisco Session Key Service overview

IOS-XR Router

- 1. SKS engine on the router generates the keys.
- 2. No additional hardware required.
- 3. The SKS engine must be seeded with the same seed on both the peers.
- 4. The seed is protected by McEliece cryptosystem which is quantum-resistant.
- 5. Only key-id is sent on the wire, and the peer derives the key from its local SKS engine.

Cisco Session Key Service workflow

Detailed configuration steps

Session Key Service configuration steps

Session Key Service configuration steps

Configuration steps – SKS profile

Configure SKS profile on both the peers

Peer-1 (Server) sks profile prof-A device-identifier peer-1 live-keys XX (Based on number of macsec sessions) peer-identifier peer-2

Peer-2 (Client) sks profile prof-B device-identifier peer-2 live-keys XX (Based on number of macsec sessions) peer-identifier peer-1 master

Session Key Service configuration steps

Configuration – McEliece key support

Export default McEliece public key using

Peer-2 (Client) crypto sks key export mceliece Path (default) : /disk0\:/MeCe_the_MC_default_pub

Copy McEliece public key to the server

Session Key Service configuration steps

Configuration – McEliece key import

Import McEliece public key on the server

Peer-1 (Server) crypto sks key import mceliece peer-2 <u>disk0:/MeCe_the_MC_default_pub</u>

Source path of the key on the server that was copied in the previous step

Peer name to which this key corresponds

Session Key Service configuration steps

Configuration – Generate and export the seed

End result - An encrypted seed will be exported at path /disk0\:/enc_self_peer-2 in the master

Copy the seed to the Client

Peer-1 (Server)
scp /disk0\:/enc_self_peer-2 cisco@1.2.43.3:/disk0:/

Session Key Service configuration steps

Configuration – Copy and import the seed on client

Import the seed on the Client

Peer-2 (Client) crypto sks seed import mceliece peer-1 <u>disk0:/enc_self_peer</u>-2

Peer server's name that generated this seed

Session Key Service configuration steps

Configuration – MACsec profile

Attach the SKS profile on Peer-1

Peer-1 (Server) macsec-policy p1 ppk sks-profile prof-A

Attach the SKS profile on Peer-2

Peer-2 (Client) macsec-policy p2 ppk sks-profile prof-B

Quantum key distribution options

External QKD hardware with Cisco's Session Key Import Protocol (SKIP)

IOS-XR Router

- 1. Dedicated hardware to generate the session keys and key-id's
- 2. The QKD hardware for a given pair of devices would be in sync
- 3. Each peer fetches the key and key-id from the QKD hardware over a TLS connection
- 4. Only key-id is sent on the wire, and the peer fetches the key from the QKD hardware

Quantum-safe MACsec

Quantum key distribution options

External QKD hardware

- 1. Hardware-based key source
- 2. Dedicated optical fiber (up to 100 km supported)
- 3. QKD hardware per-site/peer
- 4. Very expensive
- 5. Supported from IOS-XR 7.9.1 release

Cisco SKS server

- 1. Software-based key source
- 2. No dedicated circuit or distance limitations
- 3. No additional hardware requirement
- 4. No additional cost
- 5. Supported from IOS-XR 7.4.1 release

Product support and roadmap

SKS and SKIP support matrix

Platform	Release	SKS support	SKIP support
Cisco 8000 Series Router	7.4.1	Yes	No
Cisco 8000 Series Router	7.9.1	Yes	Yes
NCS 5700	7.9.1	Yes	Yes
NCS 5500	7.9.1	Yes	Yes
NCS 540 (N540-ACC-SYS, N540X-ACC-SYS, N540- 24Z8Q2C-SYS)	7.9.1	Yes	Yes
NCS 540 (all other variants)	7.10.1	Yes	Yes
ASR 9000	7.10.1	Yes	Yes

Demo

ıılıılıı cısco

The bridge to possible